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1. Introduction

Boron carbide (B4C) is an attractive ceramic to the armor community because of
its ability to fracture armor-piercing (AP) bullets and its low areal density. B4C is
one of the most mass-efficient ceramics against hard core bullets that are 12.5 mm
in diameter and smaller.® The volumetric mass density (2.49 g/cc), compressive
strength (3,070 MPa), and hardness (25.5 GPa, Knoop 1,000-gm test) of B4C are
attractive material properties compared with most advanced ceramics.? The
Ukrainian National Academy of Science (NAS) manufactured ceramic composite
tiles that were designed to fall within the density range of standard B4C and
silicon carbide (SiC) armor tiles, as shown in Fig. 1. The B4C and SiC materials
were manufactured by CoorsTek in the United States and were processed using
pressure-assisted densification (PAD), while the NAS ceramics were processed
using sintering methods. The nominal dimensions of these ceramic tiles were 90 x
90 mm and 8 mm thick. The material properties of each ceramic tile formulation
were measured by the US Army Research Laboratory’s (ARL’s) Ceramics and
Transparent Materials Branch.?

Densities of Advanced Ceramics

PADB4C PADSIC-X1 Sintered B4C-  Sintered B4C-  Sintered TiN-
AIN VB2 AIN
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Fig.1  Ceramic densities

2. Experimental Methodology

Depth of penetration (DOP) or residual penetration experiments were designed to
determine the relative ballistic performance of different ceramic materials.* For
DOP testing, a projectile is fired into a ceramic tile attached to a thick metal



backer plate so that the projectile will not deform the back surface of the metal
plate. These experiments avoid the fundamental problem of Vso ballistic
dependence on armor design (e.g., front-to-back plate ratio and material), require
fewer shots than Vso tests, and have a sensitivity equivalent to that of other
ballistic test methods. The change in penetration into the metal plates provides a
comparison with which to rank the performance of the ceramic materials.

The target configuration used for these experiments is illustrated in Fig. 2. The
target consisted of a 90- x 90-mm ceramic tile 8 mm thick backed by 2 backup
plates of aluminum (Al) alloy 6061 (AA6061, MIL-DTL-32262°) plates 50.8
mm (2 inches) thick. An epoxy resin, Dureflex Optical Aliphatic Polyether
Polyurethane Grade A4700, was used to attach each tile to the first 50.8-mm
(2-inch) plate. AA6061 was chosen as a well-characterized and readily available
backer material. The Al backer plates were also expected to provide better
resolution than steel plates. No cover plate was employed.

152.4 mm 50.8 mm| 50.8 mm
<>

AA6061 gmm

Projectile=12.7 mm APM2
Vo= 848 m/s

152.4mm

ww 06
AA6061
AA6061

90 mm

(a) Front view (b) Side view

Fig.2  Ceramic DOP target assembly



All ballistic impact experiments (sample size n = 3 per ceramic composite) were
conducted at ARL. The test projectile includes a hardened steel core penetrator
47.6 mm (1.875 inches) long, a diameter of 10.87 mm (0.428 inch), and an aspect
ratio of 4. It is known as the 12.7-mm APMZ2, shown in Fig. 3. The nominal
projectile weight was 46 g, and the core density was 7.85 g/cc.

12.7-mm APM2
Projectile =45.9 g
Hardened Steel Core = 25.9g
Rc = 60-65

58.7mm

Lead Filler

Steel Core
Jacket

Fig. 3  Cross section of a 12.7-mm APM2

The impact velocity used for all experiments was nominally 848 m/s (2,782 ft/s),
although some shots were varied from 824 m/s (2,704 ft/s) up to 872 m/s
(2,861 ft/s) into the Al back plates alone to provide for DOP corrections for
velocity variations. The velocity was chosen to produce a range of practical
residual penetrations while being consistent with normal operating conditions.

Projectiles with 3° or greater of total yaw were excluded from analysis, as
previous studies had indicated this as an appropriate cutoff point for ballistic tests
at zero obliquity.* Measuring the projectile yaw and velocity was accomplished
using a Hewlett-Packard 150 kV Flash X-ray System in 2 orthogonal planes

All residual penetration measurements were obtained by sectioning the AA6061
plates. A band saw was used to section all penetration cavities, and measurements
were made using vernier calipers to the deepest portion at the cavity, as indicated
in Fig. 4. Measurement of the “a” value avoids errors that could be caused by
deformation of the Al block around the entrance cavity.

DOP=Tpr—a

Fig.4  Measurement of residual penetration*



3. Results and Discussion

3.1 Aluminum Performance Baseline

To provide baseline data for residual penetration into the AA6061 backup plates,
a few shots were fired over the velocity range from 824 to 872 m/s (2,704 to
2,871 ft/s), as shown in Table 1. The primary penetrator defeat mechanism,
deceleration, appeared consistent over the velocity regime, yielding singular
failure modes. Residual penetration values were then measured and plotted as a

function of striking velocity to produce a baseline curve, as shown in Fig. 5.

Table 1 Front photos of reference material

824

Vx-ray Plate 1
(mis) (front plate) Plate 2
848




Table 1 Front photos of reference material (continued)
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Fig.5 AA6061 vs. 12.7-mm APM?2

A linear regression of the reference data yielded the following equation:

DOP = 0.1959 * Vx-ray — 84.406.

1)

The square of the correlation coefficient, R?, is 0.946, indicating that this curve is
a reasonable approximation. For example, an experimental impact velocity of 848
m/s would result in a DOP of 81.72 mm. The complete compilation of the data is
shown in Appendix A.




3.2 Ceramic Inspection

A variety of different ceramics were evaluated. Ceramics tested included: PAD
B4+C from CoorsTek, PAD SiC (SiC-X1) from CoorsTek, and sintered B4C/Al
nitride (B4C-AIN), sintered BsC/vanadium diboride (B4+C-VB2), and sintered
titanium nitride/AIN (TiN-AIN) from NAS. The PAD B4C and PAD SiC are
commercially available US armor ceramics that were used to establish baseline
performance.

Ceramic target assemblies, as previously described, were fabricated for all
materials listed. In general, 3 tiles of equal thickness (or areal density) were
evaluated for each material. To adjust for variations in the actual strike velocity,
all residual penetration values were normalized to a striking velocity of 848 m/s
by means of the empirical fit shown in Eq. 1. The correction is made as follows:
corrected DOP = measured DOP + [0.1959 * (848-Vy.ay)]. This technique has
been found to be valid provided that a significant amount of the penetrator
reaches the backup plate, the correction is relatively small, and the penetrator-
defeat mechanism has not changed significantly with velocity. In support of this
assumption, observations of the size and shape of the impact show no significant
differences in penetrator cavity for impact velocity variations. Ceramic target
failure will be examined in the next section. The complete compilation of the data
is shown in Appendixes B-F.

3.3 Boron Carbide

Data was obtained for PAD B4C at a thickness of 8 mm. The results of these
experiments are shown in Fig. 6.

CENTIMETERS

INCHES

T NPT B

Fig. 6  B4Cvs. 12.7-mm APM?2

The average density of the B4C tiles evaluated was 2.52 g/cc, the average DOP
was 28.16 mm, and the standard deviation was 0.26 mm. The features from the
B4C impact served as a reference for the ceramic variants.



3.4 Silicon Carbide

Data was obtained for PAD SiC-X1 at a thickness of 8 mm. The results of these
experiments are shown in Fig. 7.

Fig.7  SiCvs. 12.7-mm APM2

The average density of the SiC-X1 tiles evaluated was 3.23 g/cc, the average DOP
was 14.56 mm, and the standard deviation was 2.83 mm, showing greater scatter
than for B4C for the quantities shot.

3.5 Boron Carbide—Aluminum Nitride

Data was obtained for sintered B4C-AIN at a thickness of 8 mm. The results of
these experiments are shown in Fig. 8.

Fig.8  B4C-AINvs. 12.7mm APM?2

The average density of the B4C-AlIN tiles evaluated was 2.71 g/cc. The average
DOP of this data was 42.83 mm. The standard deviation was 3.98 mm, showing
greater scatter than for either B4C tiles or SiC-X1 tiles.

3.6 Boron Carbide-Vanadium Diboride

Data was obtained for B4C-VB; at a thickness of 8 mm. The results of these
experiments are shown in Fig. 9.



Fig. 9  B4C-VB2vs. 12.7-mm APM2

The average density of the B4C-VB: tiles evaluated was 2.97 g/cc, the average
DOP of this data was 26.36 mm. The standard deviation was 2.69 mm, showing
greater scatter than the B4C tiles but equal to the SiC-X1 tiles.

3.7 Titanium Nitride—Aluminum Nitride

Data was obtained for sintered TiN-AIN at a thickness of 8 mm. The results of
these experiments are shown in Fig. 10.

Fig. 10 TiN-AIN vs. 12.7-mm APM?2

The average density of the TiN-AIN tiles evaluated was 3.73 g/cc, the average
DOP was 16.32 mm, and the standard deviation was 0.33 mm, equal to the
scatter of the B4C tiles and lower than the scatter of the SiC-X1.



3.8 Comparative Performance of Ceramics

Since AA6061 was the reference material used in this study, Eq. 2 was used to
provide a coefficient of performance (Cp) of the ceramics compared with the
reference material:

DOPBase_ AABOB1 DO PCo rr_ AAG061

C,= (pAA6061) AD.,.. ' @

where DOPgase_aas0s1 IS the average expected residual DOP into bare Al at
848 m/s. DOPcorr aasoe1 IS the residual DOP into AA6061 after perforating the
ceramic tile, corrected for the variations in striking velocity. The calculated Cp
value provides a relative comparison of the ceramic to AA6061, i.e., a Cp of 5
means the ceramic is 5 times more weight effective than AA6061. The calculated
ceramic Cp’s are shown in Table 2, and a ceramic performance map is illustrated
in Fig. 11.

Table 2 Comparative performance of ceramics based on Cp

Experiment . )
No B4C SiC-X1 B4C-AIN B4C-VB: TiN-AIN
1 7.11 6.76 4.45 6.82 6.84
2 7.03 6.79 5.06 6.64 5.94
3 7.07 7.27 4.83 6.79 6.20
90.00 [
85.00 ‘
80.00 ¢
75.00 .
70.00 T
65.00 S
60.00 hE.
‘o Baseline AA6061
55.00 <
T Co B4C (CoorsTek)
£ 50.00 <
= N n @ SiC-X1(CoorsTek)
g 45.00 < [ ]
2 ‘S [ B B4C-AIN
8 40.00 N A
S ‘o A BA4C-VB2
35.00 <
‘o X TiN-AIN
30.00 -
M- — + = Estimated Cp_AA6061=6
25.00 <
T o Estimated Cp_AA6061=7
20.00 -
15.00 * X
10.00 *
5.00
0.00
0 5 10 15 20 25 30
Ceramic AD (kg/m?2)

Fig. 11 Ceramic performance map



The baseline CoorsTek B4C and SiC-X1 tiles provided the highest comparative
performance based on C,. The performance of the sintered ceramics was less than
the PAD B4C or PAD SiC materials. It is unclear if any future improvements can
be made in the composition or processing of the sintered tiles that might improve
performance. The B4C-AIN provided the lowest performance and is probably the
formulation least likely to undergo any follow up efforts.

4. Conclusions

From the ballistic data and analysis, the AA6061 proved to be an adequate
material as a backup block for DOP testing of the various ceramics under ballistic
impact. The ranking of the ceramic tiles, in decreasing order based on comparing
Cp values, is as follows:

1. B4C
SiC
B4+C-VB:2
TiN-AIN

o~ W

B4C-AIN
Opportunities for future investigation include the following:

« Expand the parametric analysis of ballistic performance to include the
effect of varying armor piercing projectile diameters, i.e., 0.30-cal. APM2.

« Expand the projectile target mapping to provide a more extensive view of
more performance regions, i.e., different velocity regimes.

 Determine if improvements can be made in the composition or processing
of the sintered tiles.

10
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Appendix A. Baseline Ballistic Data

This appendix appears in its original form, without editorial change.
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Appendix B. BsC Ceramic Data

This appendix appears in its original form, without editorial change.
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Appendix C. SiC-X1 Ceramic Data

This appendix appears in its original form, without editorial change.
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Appendix D. B4C-AIN Ceramic Data

This appendix appears in its original form, without editorial change.
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Appendix E. B4C-VB; Ceramic Data

This appendix appears in its original form, without editorial change.
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Appendix F. TiN-AIN Ceramic Data

This appendix appears in its original form, without editorial change.
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List of Symbols, Abbreviations, and Acronyms

Al
AIN
AP
ARL
B4C

DOP
NAS
PAD
SiC
TiN
VB:

aluminum

aluminum nitride
armor-piercing

US Army Research Laboratory
boron carbide

coefficient of performance
depth of penetration

National Academy of Science
pressure-assisted densification
silicon carbide

titanium nitride

vanadium diboride
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